
Philips Semiconductors Microcontroller Products Application note

AN438I2C routines for 8XC528

Philips Semiconductors Application Note EIE/AN90015

1March 1991

Summary
This application note presents a set of software routines to drive the
I2C interface in 8xC528 type of microcontrollers. A description of the
I2C interface is given. Examples show how to use these routines in
PL/M-51, C and assembly source code.

1.0 INTRODUCTION
This application note describes the I2C interface of the 8xC528
microcontroller and gives a set of routines in application programs to
drive this interface.

Chapter 2.0 gives a hardware description of the bit level I2C. It gives
an overview of what functions are done in hardware by the interface
and the functions that should be implemented by software. The
registers described are accessible with software and control the I2C
interface.

Chapter 3.0 gives a description of the routines that may be used by
the application program. The routines are written in such a way that
the I2C interface becomes transparent to the user. the slave
program is described in more detail, because this routine may be
adapted by the user for his specific application.

Chapter 4.0 gives simple example programs that show how to use
the routines in assemble, PL/M and C application programs.

References:

– The I2C-bus specification 9398 358 10011

– 80C51-based 8-bit Microcontrollers Data handbook IC20

– PLM51 I2C Software Interface IIC51 ETV/AN89004

2.0 THE I2C INTERFACE

2.1 Characteristics of I 2C Interface
The Block diagram of the bit-level I2C interface is shown on
page 2. P1.6/SCL and P1.7/SDA are the serial I/O pins. These two
pins meet the I2C specification concerning the input levels and
output drive capability. Consequently, these pins have an open drain
configuration. All four modes of the I2C bus can be used:

– Master transmitter

– Master receiver

– Slave transmitter

– Slave receiver

The advantages of using the bit-level I2C hardware compared with a
full software implementation are:

– Higher bit rate

– No critical software timing requirements

– Less software overhead

– More reliable data transfer

The bit-level I2C hardware can perform the following functions:

– Filtering the incoming serial data and clock signals. Glitches
shorter than 4 XTAL periods are rejected.

– Recognition of a START or STOP condition.

– Generating an interrupt request after reception of a START
condition.

– Setting the Bus Busy flag when a START condition is detected.

– Clearing the Bus Busy flag when a STOP condition is detected.

– Recognition of a serial clock pulse on the SCL line.

– Latching the serial data bit on the SDA line at every rising edge on
the SCL line.

– Stretching the LOW period of the serial clock SCL to synchronizer
with external master devices.

– Setting the Read Bit Finished (RBF) or Write Bit Finished (WBF)
flag is an error free bit transfer has occurred.

– Setting a Clock LOW-to-HIGH (CLH) flag when a leading edge is
detected on the SCL line.

– Generation of serial clock pulse on SCL in master mode.

The following functions must be done with software:

– Handling the I2C interrupt caused by a detected START condition.

– Conversion of serial to parallel data when receiving.

– Conversion of parallel to serial data when transmitting.

– Comparing received slave address with own slave address.

– Interpretation of acknowledge information.

– Guarding the I2C status if the RBF and WBF flags indicate a not
regular bit transfer.

– Generating START/STOP conditions when in master mode.

– Handling bus arbitration when in master mode.

Philips Semiconductors Microcontroller Products Application note

AN438I2C routines for 8XC528

March 1991 2

S1 X X X X X X X R/W
S1INT
(DAh)

Special Function Registers

7 6 5 4 3 2 1 0

SDI 0 0 0 0 0 0 0 RS1BIT

SDO X X X X X X X W(D9h)

1)

DF DE DD DC DB DA D9 D8

SDI SCI CLH BB RBF WBF STR ENS RS1SCS

Bit Address

SDO SCO CLH X X X STR ENS W(D8h)
2) 2) 1)

1) Software can only clear this bit
2) This bit is read with read–modify–write operation

X =Undefined (R) or don’t care (W)
R = Read access
W = Write access

Q

SDO

DIS

Output SFR Latch
P1.7

Input
P1.7

P1.7/SDA

Open
drain
buffer

FSDA
FILTER

D

SDI

CLK

FSCL

Q

SDO

DIS

Output SFR Latch
P1.6

Input
P1.6

P1.6/SCL

Open
drain
buffer

FILTER

S

SI

R FSCL

SCIAUTOCL

STRETCH

R/W
S1BIT

S

BB

R

START/STOP
condition
detection logic

S

CLR

R

FSCL

R/W

Q

ENS

Qn DIS

Q

STR

ENABLE STRETCH

Stretch Logic

S1BIT

Read/Writ bit
finished logic

RBF

WBF

Auto-clock
generator AUTOCL

R/W
S1BIT

START

Figure 1.

Philips Semiconductors Microcontroller Products Application note

AN438I2C routines for 8XC528

March 1991 3

2.2 Control and Status Registers
Control of the I2C bus hardware is done via 3 Special Function
Registers:

S1INT
This register contains the serial interrupt flag SI.

S1BIT
For read, this register contains the received bit SDI.
For write, this register contains bit SDO to be transmitted.

S1SCS
For read, this register contains status information.
For write, this register is used as control register.

2.2.1 S1INT: I2C Interrupt Register

– S1INT.7 is the Serial Interrupt request flag (SI).

If the serial I/O is enabled (ENS = 1), then a START condition will
be detected and the SI flag is set on the falling edge of the filtered
SCL signal.

Provided that EA (global enable) and ES1 (enable I2C interrupt)
are set (in the interrupt enable IE register), SI generates an
interrupt that will start the slave address receive routine.

SI is cleared by accessing the S1BIT register or by writing ‘00H’ to
S1INT. SI cannot be set by software.

After reception of a START condition, the LOW period of the SCL
pulse is stretched, suspending serial transfer to allow the software
to take appropriate action. This clock stretching is ended by
accessing the S1BIT register.

2.2.2 S1BIT: Single Bit Data Register

– S1BIT.7 contains two physical latches: the Serial Data Output
(SDO) latch for a write operation, and the filtered Serial Data Input
(SDI) latch for a read operation. SDI data is latched on the rising
edge of the filtered SCL pulse. S1BIT.7 accesses the same
physical latches as S1SCS.7, but S1BIT.7 is not bit addressable.

Reading or writing S1BIT register starts the next additional
actions:
– SI, CLH, RBF and WBF flags are cleared.

– Stretching the LOW period of the SCL clock is finished.

– Auto-clock pulse is started if enabled.

The auto-lock is an active HIGH SCL pulse that starts 28 Xtal
periods after an access to S1BIT. SCL remains high for 100 Xtal
periods. If the SCL line is kept LOW by any device that wants to
hold up the bus transfer, the auto-clock counter still runs for 20
Xtal periods to try to make SCL high and then go into a wait-state.
This will result in a minimum SCL HIGH time of 80 Xtal periods
(5µs at fXtal = 16 MHz).

The auto-clock signal will be inhibited if the SCO flag in the
S1SCS register is set to ‘1’. SCL pulses must then be generated
by software. In this situation, access to S1BIT may be used to
clear the SI, CLH, RBF and WBF flags.

A quick check on a successful bit transfer from/to SDO/SDI is
carried out be testing only the RBF or WBF flag (see 2.2.3).

2.2.3 S1SCS: Control and Status Register

– S1SCS.7 represents two physical latches, the Serial Data Output
(SDO) latch for write operations and the Serial Data Input (SDI)
latch for read operations. S1SCS.7 accesses the same physical
latches as S1BIT.7, but S1SCS.7 is bit addressable. However, a

read or write operation of S1SCS.7 does not start an auto-lock
pulse, with not finish clock stretching, and will not clear flags.

– S1SCS.6 represents two physical latches, the Serial Clock Output
(SCO) latch for write operations and the Serial Clock Input (SCI)
latch for read operations. The output of SCO is “OR-ed” with the
auto-clock pulse. If SCO = ‘1’ the auto-clock generation is
disabled and its output is LOW. Internal clock stretching logic and
external devices can then pull the SCL line LOW.

If the auto-clock is not used, the SCL line has to be controlled by
setting SCO = ‘1’, waiting for CLH to become ‘1’ and setting SCO
= ‘0’ after the specified SCL HIGH time. Data access should be
done via S1SCS.7.

– S1SCS.5 is the serial Clock LOW-to-HIGH transition flag (CLH).
This flag is set by a rising edge of the filtered serial clock. CLH =
‘1’ indicates that no devices are stretching SCL LOW, and since
the last CLH reset, a new valid data bit has been latched in SDI.

CLH can be cleared by writing ‘0’ to S1SCS.5 or by a read or write
operation to the S1BIT register. Clearing CLH also clears RBF
and WBF. Writing a ‘1’ to S1SCS.5 will not affect CLH.

– S1SCS.4 is the Bus Busy flag (BB). BB is set or cleared by
hardware only. If set, it indicates that a START condition has been
detected on the I2C bus. A STOP condition clears the BB flag.

– S1SCS.3 is the Read Bit Finished flag (RBF). If RBF = 1, it
indicates that a serial bit has been received and latched into SDI
successfully. If during a bit transfer RBF is ‘0’, the cause is
indicated as follows:

SCI = ‘1’
and
CLH = ‘1’ The SCL pulse is not finished and still HIGH.

CLH = ‘0’ A bus device is delaying the transfer by
stretching the LOW level on the SCL line.

BB = ‘0’ A STOP-condition has been detected during
the bit transfer. This should be considered as
a bus-error.

SI = ‘1’ A START-condition has been detected during
the bit transfer. This should be considered as
a bus-error.

RBF can be cleared by clearing CLH or by a read or write
operation to the S1BIT register.

– S1SCS.2 is the Write Bit Finished flag (WBF). If set, it indicates
that a serial bit in SDO has been transmitted successfully. If
during bit transfer WBF is ‘0’, the following conditions may be the
cause:

SCI = ‘1’
and
CLH = ‘1’ The SCL pulse is not finished and still HIGH.

CLH = ‘0’ A bus device is delaying the transfer by
stretching the LOW level on the SCL line.

BB = ‘0’ A STOP-condition has been detected during
the bit transfer. This should be considered as
a bus-error.

SI = ‘1’ A START-condition has been detected during
the bit transfer. This should be considered as
a bus-error.

WBF can be cleared by clearing CLH or access to the S1BIT
register.

Philips Semiconductors Microcontroller Products Application note

AN438I2C routines for 8XC528

March 1991 4

– S1SCS.1 is the STRetch control flag (STR). STR can be set or
cleared by software only. Setting STR enables the stretching of
SCL LOW periods. Stretching will occur after a falling edge on the
filtered serial clock. This allows synchronization with the SCL
clock signal of an external master device.

If STR is cleared, no stretching of the SCL LOW period will occur
after the transfer of a serial bit.

The LOW level on the SCL line is also stretched after a START
condition is received, regardless of the STR contents. The
stretching of the SCL LOW period is finished by a read or write
operation of the S1BIT register.

– S1SCS.0 is the ENable Serial I/O flag (ENS).

ENS can be set or cleared by software only.

ENS = ‘0’ disables the serial I/O. The I/O signals P1.6/SCL and
P1.7/SDA are determined by the port latches of P1.6 and P1.7
(open drain). If P1.6 and P1.7 are connected to an I2C bus, then
the flags SDI, SCI, CLH, and BB still monitor the I2C bus status,
but will not influence the I/O lines, nor will they request an
interrupt.

ENS = ‘1’ enables the START detection and clock stretching logic.
Note that the P1.6 and P1.7 latches and the SDO and SCO
control flags must be set to ‘1’ before ENS is set to avoid SCL
and/or SDA to pull the lines LOW.

Figure 2. Example of a Serial Transfer

START
CONDITION

ONE BIT
TRANSFER NEXT BIT TRANSFERS

STOP
CONDITION

SDI-1SCI-1

BB
CLEARED

READ/WRITE S1BIT
(CLEARS CLH, RBF, WBF)
(STARTS AUTO-CLOCK)

READ/WRITE S1BIT
(CLEARS SI)

(STARTS AUTO-CLOCK)SDI-0 SCI-0

CONDITIONS: ENS=1 AND STR=1

SDA

SCL

BB
SET

SI
SET

CLH
SET

RBF OR
WBF
SET

LOW PERIOD
STRETCHED

LOW PERIOD
STRETCHED

Philips Semiconductors Microcontroller Products Application note

AN438I2C routines for 8XC528

March 1991 5

3.0 I2C ROUTINES

3.1 Introduction
A set of routines is written for the I2C interface that supports
multi-master and slave operation. The routines are placed in a
library I2C_DR.LIB. If I2C_DR.LIB is linked to an application
program, only the needed object modules are linked in the output
file.

The routines can be used as device driver for PL/M-51, C and
8051-assembly code. By using these routines the bit-level I2C
interface is fully transparent for the user.

The routines use the following 8xC528 resources:

– Exclusive use of Register_Bank_1. Only R7 of this register bank
contains static data (Own Slave Address). R0..R6 may be used by
the application program when the I2C routine is finished.

– 7 bytes DATA used for parameter passing.

– 1 byte Bit-Addressable DATA for status flags.

When using routines from this library DPH, DPL, PSW (except CY)
and B are not altered.

An n-bytes data buffer is used as destination or source buffer for the
bytes to be received/transmitted and reside in DATA or IDATA
memory space.

The code is written to generate the highest transfer rate on the I2C
bus. At fXtal = 16MHz this will result in a bit rate of 87.5kbit/sec.

The following software tools from BSO/Tasking are used for program
development:

– OM4142 Cross Assembler 8051 for DOS: V3.0b

– OM4144 PL/M 8051 Compiler for DOS: V3.0a

– OM4136 C8051 Compiler for DOS: V1.1a

– OM4129 XRAY51 debugger: V1.4c

3.2 Functional Description
When using these routines in a PL/M application program, they must
be declared EXTERNAL. In this declaration the user can specify the
type returned by each procedure. All procedures (except Init_IIC
and Dis_IIC) can return a BIT or BYTE, depending on the chosen
EXTERNAL declaration. The BIT or BYTE returned is ‘0’ if the I2C
was successful. If a BYTE is returned, the following check bits are
available for the user:

BYTE.0 An I2C error has been detected.

BYTE.1 No ACK received.

BYTE.2 Arbitration lost.

BYTE.3 Time out error. This may be caused by an
external device pulling SCL LOW.

BYTE.4 A bus error has occurred. This may be a
spurious START/STOP during a bit transfer.

BYTE.5 No access to I2C bus.

BYTE.6 0

BYTE.7 0

Note that typed procedures must be called using an expression. If
the result of an I2C procedure is to be ignored, a dummy assignment
must be done for a typed procedure. The examples in the following
section assume that the procedures are called from a PL/M
program. Examples will be given later how to use these routines with
C and assembly application programs.

3.2.1 Init_IIC

Declaration
Init_IIC:

PROCEDURE (Own_Slave_Address, Slave_Sub_Address)
EXTERNAL;

DECLARE (Own_Slave_Address, Slave_Sub_Address) BYTE;
END;

Description
Init_IIC must be called after RESET, before any procedure is called.
The I2C interface and I2C interrupt will be enabled. The global
enable interrupt flag, however, will not be affected. This should be
done afterwards. Own_Slave_Address is passed to Init_IIC for use
as slave. Slave_Sub_Address is the pointer to a DATA buffer that is
used for data transfer in slave mode. When used as master in a
single master system, these parameters are not used.

Example
CALL Init_IIC (54h,.Slave_Data_Buffer);
ENABLE; /* Enable Interrupts; EA=1 */

3.2.2 Dis_IIC

Declaration
Dis_IIC:

PROCEDURE EXTERNAL;

Description
Dis_IIC will disable the I2C-interface and the I2C-interrupt. The I2C
interface will still monitor the bus, but will not influence the SDA and
SCL lines.

Example
CALL Dis_IIC;

3.2.3 IIC_Test_Device

Declaration
IIC_Test_Device:

PROCEDURE (Slave_Address) [BIT|BYTE] EXTERNAL;
DECLARE (Slave_Address) BYTE;
END;

Description
IIC_Test_Device just sends the slave address to the I2C bus. It can
be used to check the presence of a device on the I2C bus.

I2C Protocol
S-SlvW-A-P : Device is present, IIC_Error=0
S-SlvW-N-P : Device is not present, IIC_Error=1

Example
DECLARE IIC_Error BIT;
.....
IIC_Error=IIC_Test_Device(8Ch);
IF (IIC_Error) THEN

“Device not acknowledging on slave address”
ELSE

“Device acknowledges on slave address”

Philips Semiconductors Microcontroller Products Application note

AN438I2C routines for 8XC528

March 1991 6

3.2.4 IIC_Write

Declaration
IIC_Write:

PROCEDURE (Slave_Address, Count, Source_Ptr)
[BIT|BYTE] EXTERNAL;

DECLARE (Slave_Address, Count, Source_Ptr) BYTE;
END;

Description
IIC_Write is the most basic procedure to write a message to a slave
device.

I2C Protocol
L =Count
D1[0..L–1] BASED by Source_Ptr

S-SlvW-A-D1[0]-A....A-D1[L-1]-A-P

Example
DECLARE Data_Buffer(4) BYTE;
.....
CALL IIC_Write(02Ch, LENGTH(Data_Buffer),.Data_Buffer);

3.2.5 IIC_Write_Sub

Declaration
IIC_Write_Sub:

PROCEDURE (Slave_Address, Count, Source_Ptr,
Sub_Address) [BIT|BYTE] EXTERNAL;

DECLARE (Slave_Address, Count, Source_Ptr, Sub_Address)
BYTE;

END;

Description
IIC_Write_Sub writes a message preceded by a sub-address to a
slave device.

I2C Protocol
L =Count
Sub =Sub_Address
D1[0..L–1] BASED by Source_Ptr

S-SlvW-A-Sub-A-D1[0]-A-D1[1]-A....A-D1[L-1]-A-P

Example
DECLARE Data_Buffer(8) BYTE;
.....
CALL IIC_Write_Sub (48h,LENGTH(Data_Buffer),.Data_Buffer,2);

3.2.6 IIC_Write_Sub_SWInc
Declaration
IIC_Write_Sub_SWInc:

PROCEDURE (Slave_Address, Count, Source_Ptr,
Sub_Address) [BIT|BYTE] EXTERNAL;

DECLARE (Slave_Address, Count, Source_Ptr, Sub_Address)
BYTE;

END;
Description
Some I2C devices addressed with a sub-address do not
automatically increment the sub-address after reception of each
byte. IIC_Write_Sub_SWInc can be used for such devices the same
way as IIC_Write_Sub is used. IIC_Write_Sub_SWInc splits up the
message in smaller messages and increments the sub-address
itself.
I2C Protocol
L =Count
Sub =Sub_Address
D1[0..L–1] BASED by Source_Ptr

S-SlvW-A- (Sub+0) – A-D1[0] – A-P
S-SlvW-A- (Sub+1) – A-D1[1] – A-P
................................
S-SlvW-A- (Sub+L–1)-A-D1[L-1]-A-P
Example
DECLARE Data_Buffer(6) BYTE;
.....
CALL IIC_Write_Sub_SWInc(80h,LENGTH

(Data_Buffer),.Data_Buffer,2);

3.2.7 IIC_Write_Memory
Declaration
IIC_Write_Memory:

PROCEDURE (Slave_Address, Count, Source_Ptr,
Sub_Address) [BIT|BYTE] EXTERNAL;

DECLARE (Slave_Address, Count, Source_Ptr, Sub_Address)
BYTE;

END;

Description
I2C Non-Volatile Memory devices (such as PCF8582) need an
additional delay after writing a byte to it. IIC_Write_Memory can be
used to write to such devices the same way IIC_Write_Sub is used.
IIC_Write_Memory splits up the message in smaller messages and
increments the sub-address itself. After transmission of each
message a delay of 40 milliseconds (fXtal = 16 MHz) is inserted.

I2C Protocol
L =Count
Sub =Sub_Address
D1[0..L–1] BASED by Source_Ptr

S-SlvW-A- (Sub+0) – A-D1[0] – A-P
Delay 40ms

S-SlvW-A- (Sub+1) – A-D1[1] – A-P
Delay 40ms

................................
S-SlvW-A- (Sub+L–1)-A-D1[L-1]-A-P

Delay 40ms
Example
DECLARE Data_Buffer(10) BYTE;
.....
CALL IIC_Write_Memory(0A0h,LENGTH

(Data_Buffer),.Data_Buffer,0F0h);

Philips Semiconductors Microcontroller Products Application note

AN438I2C routines for 8XC528

March 1991 7

3.2.8 IIC_Write_Sub_Write

Declaration
IIC_Write_Sub_Write:

PROCEDURE (Slave_Address, Count1, Source_Ptr1,
Sub_Address, Count2, Source_Ptr2)
[BIT|BYTE] EXTERNAL;

DECLARE (Slave_Address, Count1, Source_Ptr1,
Sub_Address, Count2, Source_Ptr2) BYTE;

END;

Description
IIC_Write_Sub_Write writes 2 data blocks preceded by a
sub-address in one message to a slave device. This procedure can
be used for devices that need an extended addressing method,
without the need to put all data into one large buffer. Such a device
is the ECCT (I2C controlled teletext device; see example).

I2C Protocol
L =Count1
M =Count2
Sub =Sub_Address
D1[0..L–1] BASED by Source_Ptr1
D2[0..M–1] BASED by Source_Ptr2

S-SlvW-A-Sub-A-D1[0]-A-D1[1]-A-....
-A-D1[L-1]-A-D2[0]-A-D2[1]-A-....
-A-D2[M-1]-A-P

Example
PROCEDURE Write_CCT_Memory

(Chapter, Row, Column, Data_Buf, Data_Count);
DECLARE (Chapter, Row, Column, Data_Buf, Data_Count) BYTE;

/*
The extended address (CCT-Cursor) is formed by Chapter, Row
and Column. These three bytes are written after the sub-address
(=8) followed by the actual data that will be stored relative to the
extended address.

*/

CALL IIC_Write_Sub_Write (22h, 3, .Chapter, 8, Data_Buf,
Data_Count);

END Write_CCT_Memory;

3.2.9 IIC_Write_Sub_Read

Declaration
IIC_Write_Sub_Read:

PROCEDURE (Slave_Address, Count1, Source_Ptr1,
Sub_Address, Count2, Dest_Ptr2)
[BIT|BYTE] EXTERNAL;

DECLARE (Slave_Address, Count1, Source_Ptr1,
Sub_Address, Count2, Dest_Ptr2) BYTE;

END;

Description
IIC_Write_Sub_Read writes a data block preceded by a
sub-address, generates an I2C restart condition, and reads a data
block. This procedure can be used for devices that need an
extended addressing method. Such a device is the ECCT.

I2C Protocol
L =Count1
M =Count2
Sub =Sub_Address
D1[0..L–1] BASED by Source_Ptr1
D2[0..M–1] BASED by Source_Ptr2

S-SlvW-A-Sub-A-D1[0]-A-D1[1]-A-....
-A-D1[L-1]-A-S-SlvR-A-D2[0]-A-D2[1]-A-....
-A-D2[M-1]-N-P

Example
PROCEDURE Read_CCT_Memory

(Chapter, Row, Column, Data_Buf, Data_Count);
DECLARE (Chapter, Row, Column, Data_Buf, Data_Count) BYTE;

/*
The extended address (CCT-Cursor) is formed by Chapter, Row
and Column. These three bytes are written after the sub-address
(8). After that the actual data will be read relative to the extended
address.

*/

CALL IIC_Write_Sub_Write (22h, 3, .Chapter, 8, Data_Buf,
Data_Count);

END Read_CCT_Memory;

Philips Semiconductors Microcontroller Products Application note

AN438I2C routines for 8XC528

March 1991 8

3.2.10 IIC_Write_Com_Write

Declaration
IIC_Write_Com_Write:

PROCEDURE (Slave_Address, Count1, Source_Ptr1, Count2,
Source_Ptr2) [BIT|BYTE] EXTERNAL;

DECLARE (Slave_Address, Count1, Source_Ptr1, Count2,
Source_Ptr2) BYTE;

END;

Description
IIC_Write_Com_Write writes two data blocks from different data
buffers in one message to a slave receiver. This procedure can be
used for devices where the message consists of 2 different data
blocks. Such devices are, for instance, LCD-drivers, where the first
part of the message consists of addressing and control information,
and the second part is the data string to be displayed.

I2C Protocol
L =Count1
M =Count2
D1[0..L–1] BASED by Source_Ptr1
D2[0..M–1] BASED by Source_Ptr2

S-SlvW-A-D1[0]-A-D1[1]-A-....
-A-D1[L-1]-A-D2[0]-A-D2[1]-A-....
-A-D2[M-1]-A-P

Example
DECLARE Control_Buffer(2) BYTE;
DECLARE Data_Buffer(20) BYTE;
.....
CALL IIC_Write_Com_Write(74h, LENGTH(Control_Buffer),

.Control_Buffer, LENGTH(Data_Buffer), .Data_Buffer);

3.2.11 IIC_Write_Rep_Write

Declaration
IIC_Write_Rep_Write:

PROCEDURE (Slave_Address1, Count1, Source_Ptr1,
Slave_Address2, Count2, Source_Ptr2)
[BIT|BYTE] EXTERNAL;

DECLARE (Slave_Address1, Count1, Source_Ptr1,
Slave_Address2, Count2, Source_Ptr2) BYTE;

END;

Description
Two data strings are sent to separate slave devices, separated with
a repeat START condition. This has the advantage that the bus does
not have to be released with a STOP condition before the transfer
from the second slave.

I2C Protocol
L =Count1
M =Count2
SlvW1 =Slave_Address1
SlvW2 =Slave_Address2
D1[0..L–1] BASED by Source_Ptr1
D2[0..M–1] BASED by Source_Ptr2

S-SlvW-A-D1[0]-A-D1[1]-....
-A-D1[L-1]-A-S-SlvW-A-D2[0]-A-D2[1]-....
-A-D2[M-1]-A-P

Example
DECLARE Data_Buffer_1(10) BYTE;
DECLARE Data_Buffer_2(4) BYTE;
.....
CALL IIC_Write_Rep_Write (48h, LENGTH(Data_Buffer_1),

.Data_Buffer_1, 50h, LENGTH(Data_Buffer_2), .Data_Buffer_2);

Philips Semiconductors Microcontroller Products Application note

AN438I2C routines for 8XC528

March 1991 9

3.2.12 IIC_Write_Rep_Read

Declaration
IIC_Write_Rep_Read:

PROCEDURE (Slave_Address1, Count1, Source_Ptr1,
Slave_Address2, Count2, Dest_Ptr2)
[BIT|BYTE] EXTERNAL;

DECLARE (Slave_Address1, Count1, Source_Ptr1,
Slave_Address2, Count2, Dest_Ptr2) BYTE;

END;

Description
A data string is sent and received to/from two separate slave
devices, separated with a repeat START condition. This has the
advantage that the bus does not have to be released with a STOP
condition before the transfer from the second slave.

I2C Protocol
L =Count1
M =Count2
SlvW1 =Slave_Address1
SlvW2 =Slave_Address2
D1[0..L–1] BASED by Source_Ptr1
D2[0..M–1] BASED by Dest_Ptr2

S-SlvW-A-D1[0]-A-D1[1]-....
-A-D1[L-1]-A-S-SlvR-A-D2[0]-A-D2[1]-....
-A-D2[M-1]-N-P

Example
DECLARE Data_Buffer_1(10) BYTE;
DECLARE Data_Buffer_2(4) BYTE;
.....
CALL IIC_Write_Rep_Read (48h, LENGTH(Data_Buffer_1),

.Data_Buffer_1, 57h, LENGTH(Data_Buffer_2), .Data_Buffer_2);

3.2.13 IIC_Read

Declaration
IIC_Read:

PROCEDURE (Slave_Address, Count, Dest_Ptr)
[BIT|BYTE] EXTERNAL;

DECLARE (Slave_Address, Count, Dest_Ptr) BYTE;
END;

Description
IIC_Read is the most basic procedure to read a message from a
slave device.

I2C Protocol
M =Count
D2[0..M–1] BASED by Dest_Ptr

S-SlvR-A-D2[0]-A-D2[1]-A.....A-D2[M-1]-N-P

Example
DECLARE Data_Buffer(4) BYTE;
.....
CALL IIC_Read (0B5, LENGTH(Data_Buffer), .Data_Buffer);

3.2.14 IIC_Read_Status

Declaration
IIC_Read_Status:

PROCEDURE (Slave_Address, Dest_Ptr)
[BIT|BYTE] EXTERNAL;

DECLARE (Slave_Address, Dest_Ptr) BYTE;
END;

Description
Several I2C devices can send a one byte status-word via the bus.
IIC_Read_Status can be used for this purpose. IIC_Read_Status
works the same way as IIC_Read but the user does not have to
pass a count parameter.

I2C Protocol
Status BASED by Dest_Ptr

S-SlvR-A-Status-N-P

Example
DECLARE Status_Byte BYTE;
.....
CALL IIC_Read_Status (84h, .Status_Byte);

3.2.15 IIC_Read_Sub

Declaration
IIC_Read_Sub:

PROCEDURE (Slave_Address, Count, Dest_Ptr, Sub_Address)
[BIT|BYTE] EXTERNAL;

DECLARE (Slave_Address, Count, Dest_Ptr, Sub_Address)
BYTE;

END;

Description
IIC_Read_Sub reads a message from a slave device, preceded by a
write of the sub-address. Between writing the sub-address and
reading the message, an I2C restart condition is generated without
releasing the bus. This prevents other masters from accessing the
slave device in between and overwriting the sub-address.

I2C Protocol
M =Count
Sub =Sub_Address
D2[0..M–1] BASED by Dest_Ptr

S-SlvW-A-Sub-A-S-SlvR-D2[0]-A-D2[1]-A.....A-D2[M-1]-N-P

Example
DECLARE Data_Buffer(5) BYTE;
.....
CALL IIC_Read_Sub (0A3h, LENGTH(Data_Buffer), .Data_Buffer, 2);

Philips Semiconductors Microcontroller Products Application note

AN438I2C routines for 8XC528

March 1991 10

3.2.16 IIC_Read_Rep_Read

Declaration
IIC_Read_Rep_Read:

PROCEDURE (Slave_Address1, Count1, Dest_Ptr1,
Slave_Address2, Count2, Dest_Ptr2)
[BIT|BYTE] EXTERNAL;

DECLARE (Slave_Address1, Count1, Dest_Ptr1,
Slave_Address2, Count2, Dest_Ptr2) BYTE;

END;

Description
Two data strings are read from separate slave device, separated
with a repeat START condition. This has the advantage that the bus
does not have to be released with a STOP condition before the
transfer from the second slave.

I2C Protocol
L =Count1
M =Count2
SlvW1 =Slave_Address1
SlvW2 =Slave_Address2
D1[0..L–1] BASED by Dest_Ptr1
D2[0..M–1] BASED by Dest_Ptr2

S-SlvR-A-D1[0]-A-D1[1]-.....
-A-D1[L-1]-N-S-SlvR-A-D2[0]-A-D2[1]-.....
-A-D2[M-1]-N-P

Example
DECLARE Data_Buffer_1(10) BYTE;
DECLARE Data_Buffer_2(4) BYTE;
.....
CALL IIC_Read_Rep_Read (49h, LENGTH(Data_Buffer_1),

.Data_Buffer_1, 51h,
LENGTH(Data_Buffer_2), .Data_Buffer_2);

3.2.17 IIC_Read_Rep_Write

Declaration
IIC_Read_Rep_Write:

PROCEDURE (Slave_Address1, Count1, Dest_Ptr1,
Slave_Address2, Count2, Source_Ptr2)

[BIT|BYTE] EXTERNAL;
DECLARE (Slave_Address1, Count1, Dest_Ptr1,

Slave_Address2, Count2, Source_Ptr2) BYTE;
END;

Description
A data string is received and sent from/to two separate slave
devices, separated with a repeat START condition. This has the
advantage that the bus does not have to be released with a STOP
condition before the transfer from the second slave.

I2C Protocol
L =Count1
M =Count2
SlvW1 =Slave_Address1
SlvW2 =Slave_Address2
D1[0..L–1] BASED by Dest_Ptr1
D2[0..M–1] BASED by Source_Ptr2

S-SlvR-A-D1[0]-A-D1[1]-.....
-A-D1[L-1]-N-S-SlvW-A-D2[0]-A-D2[1]-.....
-A-D2[M-1]-A-P

Example
DECLARE Data_Buffer_1(10) BYTE;
DECLARE Data_Buffer_2(4) BYTE;
.....
CALL IIC_Read_Rep_Write(49h, LENGTH(Data_Buffer_1),

.Data_Buffer_1, 58h,
LENGTH(Data_Buffer_2), .Data_Buffer_2);

Philips Semiconductors Microcontroller Products Application note

AN438I2C routines for 8XC528

March 1991 11

3.2.18 Slave Mode Routines
There are two ways for the I2C interface to enter the slave-mode:

– After an I2C interrupt the software must enter the slave-receiver
mode to receive the slave address. This address will then be
compared with its own address. If there is a match either
slave-transmitter or slave-receiver mode will be entered. If no
match occurs, the interrupted program will be continued.

– During transmission of a slave-address in master-mode,
arbitration is lost to another master. The interface must then
switch to slave-receiver mode to check if this other master wants
to address the 8xC528 interface.

The slave-mode protocol is very application dependent. In this note
the basic slave-receive and slave-transmit routines are given and
should be considered as examples. The user may for instance send
NO_ACK after receiving a number of bytes to signal to the
master-transmitter that a data buffer is full. A description of the code
will be given later.

Slave parameters are given with the Init_IIC procedure. The passed
parameters are the own-slave-address and a
source/destination-pointer to a data buffer.

The slave-routine will be suspended at the following conditions:

– Interrupts with higher priority. Slave-routine will be resumed again
after interrupt is handled.

– If a NO_ACKNOWLEDGE is received form a master-receiver.

– If a STOP condition is detected from a master transmitter.

Constraints for user software.

– The user must control the global enable (EA) bit.

– The user must control the priority level of the I2C interrupt. If the
slave routine is interrupted by a higher priority interrupt, the SCL
line will be stretched to postpone bus transfer until the higher
interrupt is finished.

3.3 The Slave Routine: SLAVE.ASM
The listing of the slave routine can be seen on page 12. The routine
is written in such a way that stretching of SCL is minimized.
Application code can be inserted in this routine and this will increase
stretching time.

The routine has 2 entry points.

Entry via MST_ENTRY happens when an arbitration error has
occurred when transmitting a slave address in master mode.

Auto-clock generation will be disabled and SCL stretching enabled.
The byte will be continued to be received and can later be compared
with the own slave address.

The second entry point is via an interrupt when a START condition is
detected. At _PIP0A the context of the interrupted program is stored.
Next Auto-clock generation is disabled and SCL stretching enabled.
Reception of the slave address can now begin by calling
RCV_SL_BY. When the received slave-address is compared with
the own-slave-address the R/W-bit is ignored. If there is no match
between the 2 addresses, a negative ACK bit is sent and the slave
routine is left via EXIT. If there was a match the R/W bit is checked
to enter the slave-receiver or slave-transmitter mode.

The slave-transmitter mode starts at NXT_TRX. After getting the
byte from the data buffer via BUF_POINT and initializing the bit
counter BIT_CNT the transmission loop is entered. A bit is written
via access to S1BIT because this will automatically reset the CLH
and WBF status flags, and also SCL stretching. Now WBF must be
tested until the transmission is successful. When WBF becomes
true, SCL will be stretched again. When 8 bits are sent, the SDA line
is released and RBF is tested until the ACK bit is received. The ACK
bit is read by reading SDI instead of S1BIT to maintain SCL
stretching. If ACK was false, no more bytes have to be sent and the
routine is left. If another byte has to be transmitted, BUF_POINT is
updated and transmission will continue.

The slave-receiver mode starts at RCV_SLAVE. A byte is received
by calling RCV_SL_BY. This routine will clear the CY-flag when a
STOP condition has been received. This means that the master will
send no more bytes to this slave and the slave routine will be left.
When no STOP condition was detected, the received byte will be
stored @BUF_POINT and an ACK bit will be sent. After this, a new
byte can be received.

When calling RCV_SL_BY the bit counter BIT_CNT will be initialized
and the SCL stretching stopped by a dummy access to S1BIT. In the
receive loop both BB and RBF will be checked. When BB is cleared,
a STOP condition is detected and the routine will be left with CY=0.

The first 7 bits are received via S1BIT because this will release
stretching. The 8th bit is accessed via SDI because stretching must
be maintained.

If the slave routine is left via EXIT, the STR bit is cleared (to disable
stretching on SCL edges when the 8xC528 is not addressed as
slave) and a dummy access to S1BIT is done to finish current SCL
stretching. If the slave routine was entered via an interrupt the
previous context is restored.

Philips Semiconductors Microcontroller Products Application note

AN438I2C routines for 8XC528

March 1991 12

TSW–ASM51 V3.0b Serial #00052252 Slave interrupt routine

PAGE 1

LOC OBJ LINE SOURCE

 1 $TITLE(Slave interrupt routine)

 2 $DEBUG

 3 $NOLIST

 6 ;

 7 ;This routine handles I2C interrupts.

 8 ;8xC528 I2C interface enters in slave mode.

 9 ;After testing R/W bit, 8xC528 will go in slave–transmit or

 10 ;slave–receive mode.

 11 ;Source or destination buffer for data uses pointer SLAVE_SUB_ADDRESS

 12 ;Slave routine will use register bank 01

 13 ;

 14 ;**

 15 ;Interrupt entry point

 16

–––– 17 CSEG AT 53H

 18

0053: 020000 R 19 LJMP __PIP0A ;Vector to interrupt handler

 20 ;

 21 ;**

 22

 23 I2C_DRIVER SEGMENT CODE INBLOCK

–––– 24 RSEG I2C_DRIVER

 25

 26 PUBLIC MST_ENTRY

 27 EXTRN DATA(SLAVE_SUB_ADDRESS)

 28 EXTRN BIT(ARB_LOST)

 29

REG END 30 BUF_POINT SET R0

REG END 31 OWN_SLAVE SET R7

REG END 32 BIT_CNT SET R2

 33

 34 ;**

 35

0000: C0E0 R 36 __PIP0A:PUSH ACC ;Push CPU status on stack

0002: C0D0 37 PUSH PSW

0004: 75D008 38 MOV PSW,#08H ;Select registerbank 01

 39

 40 ;**

 41 ;Check slave address

 42 ;**

 43

0007: 43D842 44 ORL S1SCS,#01000010B ;Disable SCL generation and enable SCL

 ;stretching stretching

000A: 1142 R 45 ACALL RCV_SL_BY ;Receive slave address, on exit SCL is

 ; stretched

000C: A2E0 46 PROC: MOV C,ACC.0 ;Store R/W bit in F0

000E; 92D5 47 MOV F0,C

0010: 6F 48 XRL A,OWN_SLAVE ;Compare received slave address

Philips Semiconductors Microcontroller Products Application note

AN438I2C routines for 8XC528

March 1991 13

TSW–ASM51 V3.0b Serial #00052252 Slave interrupt routine

PAGE 2

LOC OBJ LINE SOURCE

0011: C2E0 49 CLR ACC.0 ;Ignore R/W bit

0013: 7050 50 JNZ NO_MATCH ;Leave slave–routine if there is no match

0015: C3 51 CLR C ;Send ACK

0016: 115C R 52 ACALL SEND_ACK

0018: A800 R 53 MOV BUF_POINT,SLAVE_SUB_ADDRESS ;Get buffer pointer

001A: A2D5 54 MOV C,F0 ;Restore R/W bit

001C: 5019 55 JNC RCV_SLAVE ;Test R/W bit

 56

 57

 58 ;**

 59 ;Slave transmitter mode

 60 ;**

 61

 62

001E: E6 63 NXT_TRX:MOV A,@BUF_POINT;Get byte to send

001F: 7A08 64 MOV BIT_CNT,#08 ;Init bit counter

 65

0021: 66 NXT_TRX_BIT:

0021: F5D9 67 MOV S1BIT,A ;Trx bit and stretch after transmission

0023: 23 68 RL A ;Prepare next bit to send

0024: 30DAFD 69 JNB WBF,$;Test if bit is sent

0027: DAF8 70 DJNZ BIT_CNT,NXT_TRX_BIT ;Test if all bits are sent

 71

0029: D2DF 72 SETB SDO ;Release SDA line for NO_ACK/ACK reception

002B: E5D9 73 MOV A,S1BIT ;Stop stretching

002D: 30DBFD 74 JNB RBF,$;Test if ACK bit is received

0030: A2DF 75 MOV C,SDI ;Read bit, SCL remains stretched

0032: 4040 76 JC EXIT ;NO_ACK received. Exit slave routine

0034: 08 77 INC BUF_POINT ;ACK received. Update pointer for next byte to

 ;send

0035: 80E7 78 SJMP NXT_TRX

 79

 80 ;**

 81 ;Slave receiver mode

 82 ;**

 83

0037: 84 RCV_SLAVE: ;Entry in slave–receiver mode

0037: 1142 R 85 ACALL RCV_SL_BY ;Receive byte

0039: 5039 86 JNC EXIT ;If STOP is detected, then exit

003B: F6 87 MOV @BUF_POINT,A ;Store received byte

003C: C3 88 CLR C ;Send ACK

003D: 115C R 89 CALL SEND_ACK

003F: 08 90 INC BUF_POINT ;Update pointer

0040: 80F5 91 SJMP RCV_SLAVE ;Receive next byte

 92

 93

Philips Semiconductors Microcontroller Products Application note

AN438I2C routines for 8XC528

March 1991 14

TSW–ASM51 V3.0b Serial #00052252 Slave interrupt routine

PAGE 3

LOC OBJ LINE SOURCE

 94 ;**

 95 ;Receive byte routine

 96 ;On exit, received byte in accu

 97 ;On exit CY=0 if STOP is detected

 98 ;**

0042: 99 RCV_SL_BY:

0042: 7A08 100 MOV BIT_CNT,#08

0044: E5D9 101 MOV A,S1BIT ;Disable stretching from START or previous ACK

0046: E4 102 CLR A

0047: 103 RCV_BIT:

0047: 30DC10 104 JNB BB,STOP_RCV ;Test if STOP–condition is received

004A: 30DBFA 105 JNB RBF,RCV_BIT ;Wait till received bit is valid

004D: BA0105 106 CJNE BIT_CNT,#01,ASSEM_BIT ;Check if last bit is to be received

 107

0050: A2DF 108 MOV C,SDI ;Get last bit without stopping stretching

0052: 33 109 RLC A

0053: D3 110 SETB C ;No STOP detected

0054: 22 111 RET

 112

0055: 113 ASSEM_BIT:

0055: 45D9 114 ORL A,S1BIT ;Receive bit; release RBF,CLH and SCL stretching

0057: 23 115 RL A

0058: DAED 116 DJNZ BIT_CNT,RCV_BIT

 117

005A: 118 STOP_RCV:

005A: C3 119 CLR C ;STOP detected

005B: 22 120 RET

 121

 122 ;**

 123 ;Send ACK/NO_ACK. Value of ACK in Carry

 124 ;**

005C: 125 SEND_ACK:

005C: 13 126 RRC A

005D: F5D9 127 MOV S1BIT,A ;Carry to SDA line

005F: 30DAFD 128 JNB WBF,$;Test if ACK/NO_ACK is sent

0062: D3DF 129 SETB SDO ;Release SDA line

0064: 22 130 RET

 131

 132 ;**

 133 ;No match between received slave–address and own–slave–address

 134 ;**

0065: 135 NO_MATCH:

0065: D3 136 SETB C ;Send NO_ACK

0066: 115C R 137 ACALL SEND_ACK

0068: 800A 138 SJMP EXIT

Philips Semiconductors Microcontroller Products Application note

AN438I2C routines for 8XC528

March 1991 15

TSW–ASM51 V3.0b Serial #00052252 Slave interrupt routine

PAGE 4

LOC OBJ LINE SOURCE

 139 ;**

 141 ;Entry point when an arbitration–lost condition is detected in

 ;master–mode.

 142 ;**

006A: 143 MST_ENTRY:

006A: 23 144 RL A ;Restore slave address sofar

006B: C2E0 145 CLR ACC.0

006D: 43D842 146 ORL S1SCS,#01000010B ;Disable SCL generation and enable SCL

 ;strectching

0070: 1147 R 147 ACALL RCV_BIT ;Proceed with receiving rest of slave address

0072: 8098 148 SJMP PROC

 149

 150

 151 ;**

 152 ;Exit from interrupt routine

 153 ;**

 154

0074: C2D9 155 EXIT: CLR STR ;Disable stretching on next falling SCL edges

0076: E5D9 156 MOV A,S1BIT ;Stop current SCL stretching

0078: 30001 R 157 JNB ARB_LOST,EX_SL

007B: 22 158 RET ;Exit when entered from master mode

007C: D0D0 159 EX_SL: POP PSW ;Restore old CPU status

007E: D0E0 160 POP ACC

0080: 32 161 RETI

 162

0081: 163 END

Philips Semiconductors Microcontroller Products Application note

AN438I2C routines for 8XC528

March 1991 16

4.0 EXAMPLES

4.1 Introduction
Some examples are given how to use the I2C routines in an
applicatIon program. Examples are given for assembly, PL/M and C
program.

The program displays time from the PCF8583P clock/calendar/RAM
on an LCD display driven by the PCF8577.

The example can be executed on the OM4151 I2C evaluation board.

4.2 Using the Routines with Assembly Sources
The listing of the example program is shown on page 17. The most
important aspect when using the I2C routines is preparing the input
parameters before the sub-routine call. When, for example, the
IIC_Write routine must be called, the parameters must be called in
the following order:

MOV _IIC_READ_BYTE,#SLAVE_ADR
MOV _IIC_READ_BYTE+1,#COUNT_1
MOV _IIC_READ_BYTE+2,#SOURCE_PTR_1
CALL _IIC_READ

Note that the order of defining the parameters is the same as in a
PL/M-call. An easier way to call the routines is making a macro that
includes the initializing of the parameters. The example program
makes use of macros.

IIC_Read is then called in the following way:

%IIC_Read(Slave_Adr,Count_1,Source_Ptr_1);

Note that in the listing the contents of the macro are shown, instead
of the call.

The macro must be written as follows:

%* DEFINE
(IIC_Read(SLAVE_ADR,COUNT_1,SOURCE_PTR_1))
(MOV _IIC_READ_BYTE,#%SLAVE_ADR
MOV _IIC_READ_BYTE+1,#%COUNT_1
MOV _IIC_READ_BYTE+2,#%SOURCE_PTR_1
LCALL _IIC_READ)

Macros for the I2C CALLs are found in I2C.MAC. This file should be
included in all modules making use of the macros. One of the
modules should also include the variable definitions needed by the
I2C routines. These are found in file VAR_DEF.ASM. If the program
consists of more than 1 module, then these modules should also
include EXT_VAR.ASM. This file contains the EXTRN- definitions of
the I2C routines.

When and I2C routine is called, the accumulator contains status
information and the CY-bit is set if an error has occurred. The
contents of the accumulator are the same as the returned byte when
using PL/M.

Philips Semiconductors Microcontroller Products Application note

AN438I2C routines for 8XC528

March 1991 17

TSW–ASM51 V3.0b Serial #00052252 Assembly example program PAGE 1

LOC OBJ LINE SOURCE

 1 $TITLE(Assembly example program)

 2 $DEBUG

 3

 4 ;Hours and minutes will be displayed on LCD display

 5 ;Dot between hours and minutes will blink

 6

 7 $;Include I2C var. definitions

 8 # 1 ”C:\USER\VAR_DEF.ASM”

 74 # 8 ”DEMO_ASM.ASM”

 8 $;Include I2C macro’s

 9 # 1 ”C:\USER\I2C.MAC”

 35 # 9 ”DEMO_ASM.ASM”

00A2 10 CLOCK_ADR EQU 0A2h ;Address of PCF8583

0001 11 CL_SUB_ADR EQU 01h ;Sub address for reading time

0074 12 LCD_ADR EQU 74h ;Address of PCF8577

 13

 14 RAMVAR SEGMENT DATA ;Segment for variables

 15 USER SEGMENT DATA ;Segment for application

 ;program

 16

–––– 17 RSEC RAMVAR

0000: R 18 STACK: DS 10 ;Stack area

000A: 19 TIME_BUFFER:DS 4 ;Buffer for I2C strings

000E: 20 LCD_BUFFER: DS 5

 21

–––– 22 CSEG AT 00

0000: 020000 R 23 LJMP APL_START

 24

 25

–––– 26 RSEG USER

 27

0000: R 28 APL_START:

0000: 900073 R 29 MOV DPTR,#LCD_TAB ;Pointer to segment table

0003: 7581FF R 30 MOV SP,#STACK–1 ;Initialize stack

0006: 750E00 R 31 MOV LCD_BUFFER,#00 ;Control word for LCD driver

 32

0009: 750022 R 33 MOV _Init_IIC_Byte ,#22h

000C: 75010A R 34 MOV _Init_IIC_Byte+1,#TIME_BUFFER

000F: 120000 R 35 LCALL _Init_IIC

 36 ;Initialize I2C interface

0012: E4 37 CLR A ;Prepare buffer for clock int.

0013: F50A R 38 MOV TIME_BUFFER,A

0015: F50B R 39 MOV TIME_BUFFER+1,A

 40

0017: 7500A2 R 41 MOV _IIC_Write_Byte ,#CLOCK_ADR

001A: 750102 R 42 MOV _IIC_Write_Byte+1,#2

001D: 75020A R 43 MOV _IIC_Write_Byte+2,#TIME_BUFFER

0020: 120000 R 44 LCALL _IIC_Write

Philips Semiconductors Microcontroller Products Application note

AN438I2C routines for 8XC528

March 1991 18

TSW–ASM51 V3.0b Serial #00052252 Assembly example program PAGE 2

LOC OBJ LINE SOURCE

 45 ;Initialize clock

 46

0023: 47 REPEAT:

0023: 7500A2 R 48 MOV _IIC_Read_Sub_Byte ,#CLOCK_ADR

0026: 750104 R 49 MOV _IIC_Read_Sub_Byte+1,#4

0029: 75020A R 50 MOV _IIC_Read_Sub_Byte+2,#TIME_BUFFER

002C: 750301 R 51 MOV _IIC_Read_Sub_Byte+3,#CL_SUB_ADR

002F: 120000 R 52 LCALL _IIC_Read_Sub

 53 ;Read time

 54

 55 ;Time has been read. Order: hundreds of sec’s, sec’s, min’s and hr’s

0032: E50D R 56 MOV A,TIME_BUFFER+3 ;Mask of hour counter

0034: 543F 57 ANL A,#3Fh

0036: F50D R 58 MOV TIME_BUFFER+3,A

 59

0038: 120054 R 60 CALL CONVERT ;Convert time data to LCD

 ;segment data

 61

 62 ;Check if dot has to be switched on

003B: 431101 R 63 ORL LCD_BUFFER+3,#01h

 64 ;If lsb of seconds is ’0’, then switch on dp

003E: E50B R 65 MOV A,TIME_BUFFER+1 ;Get seconds

0040: 13 66 RRC A

0041: 4003 67 JC PROCEED

0043: 430F01 R 68 ORL LCD_BUFFER+1,#01 ;Switch on dp

 69

 70 ;Display new time

0046: 71 PROCEED:

0046: 750074 R 72 MOV _IIC_Write_Byte ,#LCD_ADR

0049: 750105 R 73 MOV _IIC_Write_Byte+1,#5

004C: 75020E R 74 MOV _IIC_Write_Byte+2,#LCD_BUFFER

004F: 120000 R 75 LCALL _IIC_Write

 76

0052: 80CF 77 SJMP REPEAT ;Read new time

 78

 79

 80 ;CONVERT converts BCD data of time to segment data

0054: 780F R 81 CONVERT:MOV R0,#LCD_BUFFER+1 ;R0 is pointer

0056: E50D R 82 MOV A,TIME_BUFFER+3 ;Get hours

0058: C4 83 SWAP A ;Swap nibbles

0059: 12006D R 84 CALL LCD_DATA ;Convert 10’s of hours

005C: E50D R 85 MOV A,TIME_BUFFER+3

005E: 12006D R 86 CALL LCD_DATA ;Convert hours

0061: E50C R 87 MOV A,TIME_BUFFER+2 ;Get minutes

0063: C4 88 SWAP A

0064: 12006D R 89 CALL LCD_DATA ;Convert 10’s of minutes

0067: E50C R 90 MOV A,TIME_BUFFER+2

0069: 12006D R 91 CALL LCD_DATA ;Convert minutes

Philips Semiconductors Microcontroller Products Application note

AN438I2C routines for 8XC528

March 1991 19

TSW–ASM51 V3.0b Serial #00052252 Assembly example program PAGE 3

LOC OBJ LINE SOURCE

006C: 22 92 RET

 93

 94 ;LCD_DATA gets data from segment table and stores it in LCD_BUFFER

006D: 95 LCD_DATA:

006D: 540F 96 ANL A,#0FH ;Mask off LS–nibble

006F: 93 97 MOVC A,@A+DPTR ;Get segment data

0070: F6 98 MOV @R0,A ;Save segment data

0071: 08 99 INC R0

0072: 22 100 RET

 101 ;

 102 ;Conversion table for LCD

0073: 103 LCD_TAB:

0073: FC60DA 104 DB 0FCH,60H,0DAH ;’0’,’1’,’2’

0076: F266B6 105 DB 0F2H,66H,0B6H ;’3’,’4’,’5’

0079: 3EE0FE 106 DB 3EH,0E0H,0FEH ;’6’,’7’,’8’

007C: E6 107 DB 0E6H ;’9’

 108 ;

007D: 109 END

4.3 Using the Routines with PL/M-51 Sources
The following listing shows the listing of the clock program in
PL/M-51. The procedures are untyped. The routines are used the
same way as in the examples of chapter 3.2.

$OPTIMIZE(4)

$DEBUG

$CODE

/* Hours and minutes will be displayed on LCD display

 Dots between hours and minutes will blink */

Demo_plm: Do;

/* External declarations */

Init_IIC: Procedure(Own_Adr,Slave_Ptr) External;

 Declare (Own_Adr,Slave_Ptr) Byte Main;

End Init_IIC;

IIC_Write: Procedure(Sl_Adr,Nr_Bytes,Source_Ptr) External;

 Declare (Sl_Adr,Nr_Bytes,Source_Ptr) Byte Main;

End IIC_Write;

IIC_Read_Sub: Procedure(Sl_Adr,Nr_Bytes,Dest_Ptr,Sub_Adr) External;

 Declare(Sl_Adr,Nr_Bytes,Dest_Ptr,Sub_Adr) Byte Main;

End IIC_Read_Sub;

Philips Semiconductors Microcontroller Products Application note

AN438I2C routines for 8XC528

March 1991 20

Clock: Do;

 /* Variable and constant declarations */

 Declare LCD_TAB(*) Byte Constant (0FCh,60H,0DAH,0F2H,66H,

 0B6H,3EH,0E0H,0FEH,0E6H);

 Declare Time_Buffer(4) Byte Main;

 Declare LCD_Buffer(5) Byte Main;

 Declare Tab_Point Word Main;

 Declare (LCD_Point,Time_Point) Byte Main;

 Declare Segment Based LCD_Point Byte Main;

 Declare Time Based Time_Point Byte Main;

 Declare Tab_Value Based Tab_Point Byte Constant;

 Declare clock_Adr Literally ’0A2h’;

 Declare LCD_Adr Literally ’74h’;

 Declare C1_Sub_Adr Literally ’01h’;

 Call Init_IIC(22h,.Time_Buffer);

 LCD_Buffer(0)=0; /* LCD control word */

 Time_Buffer(0)=0;

 Time_Buffer(1)=0;

 Call IIC_Write(Clock_Adr,2,.Time_Buffer); /* Initialize clock */

 Do While LCD_Buffer(0)=0; /* Program loop */

 Call IIC_Read_Sub(Clock_Adr,4,.Time_Buffer,Cl_Sub_Adr);

 /* Get time */

 LCD_Point=.LCD_Buffer+1; /* Initialize pointers */

 Time_point=.Time_Buffer(3);

 Tab_Point=.LCD_Tab(0)+SHR(Time,4); /* 10–HR’s */

 Segment=Tab_Value;

 LCD_Point=LCD_Point+1;

 Tab_Point=.LCD_Tab(0)+(Time AND 0FH); /* HR’s */

 Segment=Tab_Value;

 Time_Point=Time_Point–1;

 LCD_Point=LCD_Point+1;

 Tab_Point=.LCD_Tab+SHR(Time,4); /* 10–MIN’s */

 Segment=(Tab_Value OR 01H); /* dp */

 LCD_Point=LCD_Point+1;

 Tab_Point=.LCD_Tab+(Time AND 0FH); /* MIN’s */

 Segment=Tab_Value;

 Time_Point=.Time_Buffer(1)+1; /*Check sec’s for blinking */

 LCD_Point=.LCD_Buffer+1;

 If (Time AND 01H)>0 then Segment=(Segment OR 01H);

 Call IIC_Write(LCD_Adr,5,.LCD_Buffer); /* Display time */

 End;

 End Clock;

End Demo_plm;

Philips Semiconductors Microcontroller Products Application note

AN438I2C routines for 8XC528

March 1991 21

4.4 Using the Routines with C Sources
An example of a C program using the I2C routines follows. Function
prototypes are found in header file “i2c.h”. In this example the
function prototypes are written in such a way that not value is
returned by the function. If the STATUS byte is needed, the header
file may be changed to return a byte. Note that the function calls are
written in upper-case. This is due to the fact that the used version of
the assembler/linker is case sensitive.

#include <C:\USER\i2c.h>

 rom char LCD_Tab[]={0xFC,0x60,0xDA,0xF2,0x66,0xB6,0x3E,

 0xE0,0xFE,0xE6};

void main()

{

 #define Clock_Adr 0xA2

 #define LCD_Adr 0x74

 #define C1_Sub_Adr 0x01

 rom char * Tab_Ptr;

 data char Time_Buffer[4];

 data char * Time_Ptr;

 data char LCD_Buffer[5];

 data char * LCD_Ptr;

 INIT_IIC(0x22,&Time_Buffer);

 LCD_Buffer[0]=0; /* LCD control word */

 Time_Buffer[0]=0;

 Time_Buffer[1]=0;

 IIC_WRITE(Clock_Adr,2,&Time_Buffer); /* Initialize clock */

 while (1) /* Program loop */

 {

 IIC_READ_SUB(Clock_Adr,4,&Time_Buffer,C1_Sub_Adr);

 /* Get time */

 LCD_Ptr = &LCD_Buffer[1]; /* Initialize pointers */

 Time_Ptr = &Time_Buffer[3];

 Tab_Ptr = (LCD_Tab+(*Time_Ptr >> 4)); /* 10–HR’s */

 *(LCD_Ptr++) = *Tab_Ptr;

 Tab_Ptr = (LCD_Tab+(*(Time_Ptr––) & 0x0F)); /* HR’s */

 *(LCD_Ptr++) = *Tab_Ptr;

 Tab_Ptr = (LCD_Tab+(*Time_Ptr >> 4)); /* 10–MIN’s */

 *(LCD_Ptr++) = (*Tab_Ptr | 0x01); /* dp */

 Tab_Ptr = (LCD_Tab+(*Time_Ptr & 0x0F)); /* MIN’s */

 *LCD_Ptr = *Tab_Ptr;

 Time_Ptr = &Time_Buffer[1]; /* Check sec’s for blinking */

 LCD_Ptr = &LCD_Buffer[1];

 if ((*Time_Ptr & 0x01)>0)

 *LCD_Ptr = (*LCD_Ptr | 0x01);

 IIC_WRITE(LCD_Adr,5,&LCD_Buffer); /* Display time */

 }

}

Philips Semiconductors Microcontroller Products Application note

AN438I2C routines for 8XC528

March 1991 22

5.0 CONTENTS OF DISK
A disk contains the following 3 directories:

1: \USER
This director contains the files that may be used in the user program.
I2C_DR.LIB Library with I2C routines.
I2C.H Header file for C applications.
I2C.MAC Macro’s for the I2C routine calls in assembly programs.
VAR_DEF.ASM Include file with variable definitions for assembly programs.
EXT_VAR.ASM Include file with external definitions for assembly programs.
LIB.BAT Example batch file to create I2C_DR.LIB.
ASM.BAT Example batch file to assemble source modules for library.

2: \EXAMPLE
This directory contains the source files of the examples described in chapter 4.0.
DEMO_ASM.* Assembly example.
DEMO_PLM.* PL/M example.
HEAD_51.SRC Example of environment file for PL/M example.
DEMO_C.* C example.
CSTART.ASM Example of environment file for C example.

3: \SOURCE
This directory contains the source files of the modules in the library.

	Summary
	1.0 INTRODUCTION
	2.0 THE I 2 C INTERFACE
	2.1 Characteristics of I C Interface
	2.2 Control and Status Registers

	3.0 I 2 C ROUTINES
	3.1 Introduction
	3.2 Functional Description
	3.3 The Slave Routine

	4.0 EXAMPLES
	4.1 Introduction
	4.2 Using the Routines with Assembly Sources
	4.3 Using the Routines with PL/M-51 Sources
	4.4 Using the Routines with C Sources

	5.0 CONTENTS OF DISK

